Answer:
[tex]T_b=107.3784\ ^{\circ}C[/tex]
Explanation:
Given:
So, the heat rate:
[tex]\dot Q=\frac{0.409\times 2260000}{60}[/tex]
[tex]\dot Q=15405.67\ W[/tex]
From the Fourier's law of conduction we have:
[tex]\dot Q=k.A.\frac{dT}{dx}[/tex]
[tex]\dot Q=k\times \pi.r^2\times \frac{T_b-T_t}{5.2\times 10^{-3}}[/tex]
where:
[tex]A=[/tex] area of the surface through which conduction occurs
[tex]T_b=[/tex] temperature of the bottom surface
[tex]15405.67=240\times \pi\times 0.12^2\times \frac{T_b-100}{5.2\times 10^{-3}}[/tex]
[tex]T_b=107.3784\ ^{\circ}C[/tex] is the temperature of the bottom of the base surface of the kettle.