Answer:
[tex]\text{heat loss} = 24864.05 \ W/m^2[/tex]
Explanation:
If
then: part(a):
[tex]\text{heat loss } = \frac{T_1 - T_2} { \frac{1}{h_1} + \frac{t_1}{t_2} + R_c + \frac{t_2}{k_2} + \frac{1}{h_2}}[/tex]
using known values:
[tex]\text {heat loss} = 2486.05 W/m^2[/tex]
part(b): Using the rate equation :
[tex]\text {heat loss} = h_1 (T_1 - T_{s1})[/tex]
the surface temperature [tex]T_{s1} = 1678.438 \ K[/tex]
and [tex]T_{c1} = T_{s1} - \frac {t_1 (\text{heat loss})}{k_1} = 1664.560 \ K[/tex]
Similarly
[tex]T_{c2} = T_{c1} - R_c (\text{heat loss}) = 421.357 \ K[/tex]
[tex]T_{s2} = T_{c2} - \frac {t_2 (\text{heat loss})}{ k_2} = 397.864 \ K[/tex]
The temperature distribution is shown in the attached image