Respuesta :

gmany

Answer:

[tex]\huge\boxed{y=-\dfrac{5}{2}x-1}[/tex]

Step-by-step explanation:

Parallel lines have the same slope.

The slope-intercept form of an equationo f a line:

[tex]y=mx+b[/tex]

m - slope

b - y-intercept

We have the equation of the line in a standard form.

Convert to the slope-intercept form:

[tex]5x+2y=12[/tex]               subtract 5x from both sides

[tex]2y=-5x+12[/tex]          divide both sides by 2

[tex]y=-\dfrac{5}{2}x+6[/tex]

The slope

[tex]m=-\dfrac{5}{2}[/tex]

Therefore we have:

[tex]y=-\dfrac{5}{2}x+b[/tex]

Substitute the coordinates of the given point (-2, 4):

[tex]4=-\dfrac{5}{2}(-2)+b[/tex]

[tex]4=5+b[/tex]             subtract 5 from both sides

[tex]-1=b\to b=-1[/tex]

Finally we have:

[tex]y=-\dfrac{5}{2}x-1[/tex]