Hydrogen sulfide decomposes according to the following reaction, for which Kc = 9.30 × 10−8 at 700°C: 2 H2S(g) ⇌ 2 H2(g) + S2(g) If 0.59 mol of H2S is placed in a 3.0−L container, what is the equilibrium concentration of H2(g) at 700°C?

Respuesta :

Answer:

0.00193 mol/L

Explanation:

Given that:

numbers of moles of H₂S = 0.59 moles

Volume = 3.0-L

Equilibrium constant [tex]K_c[/tex] = 9.30 × 10⁻⁸

The equation for the reaction is given as :

2H₂S    ⇄   2H₂(g)  +  S₂(g)

The initial concentration of H₂S = [tex]\frac{number of moles of H_2S }{Volume}[/tex]

The initial concentration of H₂S = [tex]\frac{0.59 moles}{3.0}[/tex]

= 0.1966 mol/L

The ICE table is shown be as :

                            2H₂S                ⇄         2H₂(g)        +        S₂(g)

Initial                    0.9166                           0                           0

Change                 -2 x                               +2 x                      + x

Equilibrium          (0.9166 - 2x)                   2x                         x

[tex]K_c= \frac{[H_2]^2[S_2]}{[H_2S]^2}[/tex]

[tex]9.38*10^{-8}= \frac{[2x]^2[x]}{[0.1966-2x]^2}[/tex]

[tex]9.38*10^{-8}= \frac{[4x]^3}{[0.1966]^2}[/tex]      

(since 2x < 0.1966 if solved through quadratic equation)

[tex]4x^3= {9.30*10^-8 * 0.1966^2}[/tex]

[tex]x^3= \frac{9.30*10^-8 * 0.1966^2}{4}[/tex]

[tex]x^3= 8.9865*10^{-10[/tex]

[tex]x=\sqrt[3]{8.9865*10^{-10}}[/tex]

[tex]x= 9.65*10^{-4}[/tex]

The equilibrium concentration for H₂(g) = 2x

∴ [tex]2*9.65*10^{-4[/tex]

= 0.00193 mol/L

Thus, the equilibrium concentration of H₂(g) at 700°C =  0.00193 mol/L