Respuesta :

Explanation:

Let the reaction equation for the dissociation of weak acid is as follows.

                      [tex]HA \rightarrow H^{+} + A^{-}[/tex]

Initial:         0.87            0         0

Change:      -x               +x         +x

Equilibrium:  0.87 - x    +x         +x

Hence, expression for the dissociation constant will be as follows.

           [tex]k_{a} = \frac{[H^{+}][A^{-}]}{[HA]}[/tex]

Now, putting the given values into the above formula as follows.

        [tex]k_{a} = \frac{[H^{+}][A^{-}]}{[HA]}[/tex]

       [tex]4.3 \times 10^{-7} = \frac{x \times x}{(0.187 - x)}[/tex]

               x = 0.000283

Hence, at equilibrium the concentration of hydrogen ions is 0.000283.

or,     [tex][H^{+}] = 2.83 \times 10^{-4}[/tex]

            [tex][H^{+}] = C \times \alpha[/tex]

Also,   [tex]\alpha = \frac{[H^{+}]}{C}[/tex]

                      = [tex]\frac{0.000283}{0.187}[/tex]

                      = 0.00151

And, the percentage of dissociation is [tex]0.00151 \times 100[/tex] = 0.151%

Thus, we can conclude that percent dissociation of given weak acid is 0.151%.