Respuesta :

Answer:

[tex]\left \{ {{x=8.43} \atop {y=3.14}} \right.[/tex]

Step-by-step explanation:

We have to operate with both equations to find the answers. The idea is (by adding, subtracting and/or multiplying) to "eliminate" one of the variables.

Lets eliminate [tex]y[/tex]

- Multiply the first equation by 2: [tex]2(2x-y=20) = (4x - 2y = 40)[/tex]

- Now, adding this last equation to the second equation of the system:

[tex](4x-2y=40)+(3x+2y=19) = (7x=59)[/tex]

Clearing [tex]x[/tex]

[tex]x = \frac{59}{7} = 8.43[/tex]

Now, knowing the value of [tex]x[/tex] we can find [tex]y[/tex] using any of the two initial equations. Using 1:

[tex]y = 2x - 20 = 2(8.43) -20 = 3.14[/tex]

Answer:

x=5.57 and y= -8.86

Step-by-step explanation:

Given:

[tex]2x - y = 20[/tex]       equation:1

[tex]3x +2y = 19[/tex]     equation:2

Multiply equation:1 by 2 on both the sides.

[tex]4x-2y=20[/tex]     equation:3

Adding equation:3 in equation:2

[tex]3x+2y+(4x-2y)=19+20\\3x+2y+4x-2y=39\\\7x=39\\x=39/7\\x=5.57[/tex]

Putting value of 'x' in equation 1

[tex]2x-y=20\\2(5.57)-y=20\\11.14-y=20\\y=11.14-20\\y=-8.86[/tex]