Answer:
a) t = 0.86 sec
b) v = 7.128 m/s
Explanation:
Given data:
Constant acceleration = 5.8 m/s^2
Initial velocity = 2.1 m/s
Displacement = 4.0 m
kinematic equation is given as
[tex]X -X_o = v_o \times t + \frac{1}{2} at^2[/tex]
[tex]X- X_o = 4.0 m[/tex]
v = 2.1 m/s
a = 5.8 m/s^2
plugging all value in the above relation
[tex]4 = 2.1t + \frac{1}{2} 5.8t^2[/tex]
[tex]2.9t^2 + 2.1t - 4 = 0 [/tex]
solve for t
[tex]t = \frac{-2 \pm \sqrt{2.1^2 -(4\times 2.9 \times (-4)}}{2\times 2.9}[/tex]
t = 0.86 sec
b) kinematic equation relating to velocity is given as
[tex]v = v_0 + at[/tex]
solving for velocity
[tex]v = 2.1 + 5..8\times 0.867 [/tex]
v = 7.128 m/s