Respuesta :
Answer : The final temperature inside the container is, [tex]51.5^oC[/tex]
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.
[tex]q_1=-q_2[/tex]
[tex]m_1\times c_1\times (T_f-T_1)=-m_2\times c_2\times (T_f-T_2)[/tex]
As per question, heat capacity of the container is negligible and mass is also equal. So, the formula will be:
[tex](T_f-T_1)=-(T_f-T_2)[/tex]
where,
[tex]c_1[/tex] = specific heat of copper
[tex]c_2[/tex] = specific heat of another copper
[tex]m_1[/tex] = mass of copper
[tex]m_2[/tex] = mass of another copper
[tex]T_f[/tex] = final temperature of mixture = ?
[tex]T_1[/tex] = initial temperature of copper = [tex]82^oC[/tex]
[tex]T_2[/tex] = initial temperature of another copper = [tex]21^oC[/tex]
Now put all the given values in the above formula, we get
[tex](T_f-82)^oC=-(T_f-21)^oC[/tex]
[tex]T_f=51.5^oC[/tex]
Therefore, the final temperature inside the container is, [tex]51.5^oC[/tex]
The final temperature inside the container is [tex]51.5[/tex] °C.
Temperature:
The heat capacity of the container is negligible and mass is also equal.
The formula for final temperature shown below,
[tex](T_{f}-T_{1})=-(T_{f}-T_{2})[/tex]
Where, [tex]T_{f}[/tex] is final temperature, [tex]T_{1}[/tex] and [tex]T_{2}[/tex] are initial temperature of both copper bolts.
Given that, [tex]T_{1}=82,T_{2}=21[/tex]
substitute values in above equation.
[tex]T_{f}-82=-(T_{f}-21)\\\\T_{f}-82=-T_{f}+21\\\\2T_{f}=82+21=103\\\\T_{f}=103/2=51.5[/tex]
The final temperature inside the container is [tex]51.5[/tex] °C.
Learn more about the temperature here:
https://brainly.com/question/24759760