Two copper bolts of equal mass - one at 82°C, the other at 21°C - are placed in an insulated container. Assuming the heat capacity of the container is negligible, what is the final temperature (in °C) inside the container (c of copper = 0.387 J/gK)? Enter to 0 decimal places.

Respuesta :

Answer : The final temperature inside the container is, [tex]51.5^oC[/tex]

Explanation :

In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.

[tex]q_1=-q_2[/tex]

[tex]m_1\times c_1\times (T_f-T_1)=-m_2\times c_2\times (T_f-T_2)[/tex]

As per question, heat capacity of the container is negligible and mass is also equal. So, the formula will be:

[tex](T_f-T_1)=-(T_f-T_2)[/tex]

where,

[tex]c_1[/tex] = specific heat of copper

[tex]c_2[/tex] = specific heat of another copper

[tex]m_1[/tex] = mass of copper

[tex]m_2[/tex] = mass of another copper

[tex]T_f[/tex] = final temperature of mixture = ?

[tex]T_1[/tex] = initial temperature of copper = [tex]82^oC[/tex]

[tex]T_2[/tex] = initial temperature of another copper = [tex]21^oC[/tex]

Now put all the given values in the above formula, we get

[tex](T_f-82)^oC=-(T_f-21)^oC[/tex]

[tex]T_f=51.5^oC[/tex]

Therefore, the final temperature inside the container is, [tex]51.5^oC[/tex]

The final temperature inside the container is [tex]51.5[/tex]  °C.

Temperature:

The heat capacity of the container is negligible and mass is also equal.

The formula for final temperature shown below,

                         [tex](T_{f}-T_{1})=-(T_{f}-T_{2})[/tex]

Where, [tex]T_{f}[/tex] is final temperature, [tex]T_{1}[/tex] and [tex]T_{2}[/tex] are initial temperature of both copper bolts.

Given that,  [tex]T_{1}=82,T_{2}=21[/tex]

substitute values in above equation.

                  [tex]T_{f}-82=-(T_{f}-21)\\\\T_{f}-82=-T_{f}+21\\\\2T_{f}=82+21=103\\\\T_{f}=103/2=51.5[/tex]

The final temperature inside the container is [tex]51.5[/tex]  °C.

Learn more about the temperature here:

https://brainly.com/question/24759760