Respuesta :
The product of the expression is [tex]84 x^{11}[/tex]
Explanation:
The expression is [tex](4 x)(-3 x ^8)\left(-7 x^{2}\right)[/tex]
Let us simplify the expression by multiplying the first two terms.
Thus, we have,
[tex][(4 x)(-3 x ^8)]\left(-7 x^{2}\right)[/tex]
First, multiplying the coefficients, we get, [tex]4(-3)=-12[/tex]
Since, the base x is common for both the terms, we can add the exponent.
Thus, we get, [tex]x\left(x^{8}\right)=x^{1+8}=x^{9}[/tex]
Thus, the simplification of the first two terms, we have,
[tex](-12x^9)(-7x^{2} )[/tex]
Similarly, we shall multiply the terms [tex](-12x^9)(-7x^{2} )[/tex], we get,
Multiplying the coefficients, we have, [tex]-12(-7)=84[/tex]
Adding the exponents, we have, [tex]x^9\left(x^{2}\right)=x^{9+2}=x^{11}[/tex]
Thus, this gives [tex]84 x^{11}[/tex]
Hence, the product of the expression is [tex]84 x^{11}[/tex]