Respuesta :

The product of the expression is [tex]84 x^{11}[/tex]

Explanation:

The expression is [tex](4 x)(-3 x ^8)\left(-7 x^{2}\right)[/tex]

Let us simplify the expression by multiplying the first two terms.

Thus, we have,

[tex][(4 x)(-3 x ^8)]\left(-7 x^{2}\right)[/tex]

First, multiplying the coefficients, we get, [tex]4(-3)=-12[/tex]

Since, the base x is common for both the terms, we can add the exponent.

Thus, we get, [tex]x\left(x^{8}\right)=x^{1+8}=x^{9}[/tex]

Thus, the simplification of the first two terms, we have,

[tex](-12x^9)(-7x^{2} )[/tex]

Similarly, we shall multiply the terms [tex](-12x^9)(-7x^{2} )[/tex], we get,

Multiplying the coefficients, we have, [tex]-12(-7)=84[/tex]

Adding the exponents, we have, [tex]x^9\left(x^{2}\right)=x^{9+2}=x^{11}[/tex]

Thus, this gives [tex]84 x^{11}[/tex]

Hence, the product of the expression is [tex]84 x^{11}[/tex]

Answer:

84x12

Step-by-step explanation: