Respuesta :

The value of x is [tex]x=1, x=-1[/tex]

Explanation:

The expression is [tex]\sqrt{2 x^{2}-1}=x[/tex]

Square both sides of the equation, we get,

[tex]2 x^{2}-1=x^{4}[/tex]

Switch sides,

[tex]x^{4}=2 x^{2}-1[/tex]

Subtracting both sides by [tex]2 x^{2}[/tex],

[tex]x^{4}-2 x^{2}=-1[/tex]

Adding both sides by 1,

[tex]x^{4}-2 x^{2}+1=0[/tex]

Let us rewrite the equation as [tex]u=x^{2}[/tex] and [tex]u^{2}=x^{4}[/tex]

Thus, we have,

[tex]u^{2}-2 u+1=0[/tex]

Simplifying using quadratic formula,

[tex]u=\frac{-(-2) \pm \sqrt{(-2)^{2}-4 \cdot 1 \cdot 1}}{2 \cdot 1}[/tex]

Simplifying, we get,

[tex]u=\frac{-(-2)}{2 \cdot 1}[/tex]

[tex]u=1[/tex]

Substituting [tex]u=1[/tex]  in [tex]u=x^{2}[/tex], we get,

[tex]x^{2} =1[/tex]

[tex]x=1, x=-1[/tex]

Thus, the value of x is [tex]x=1, x=-1[/tex]