Respuesta :
Answer:
[tex]\displaystyle \int\limits^3_0 {15te^{-0.2t}} \, dt = 45.713 \ \text{ng/mL}[/tex]
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]: [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
Integration Rule [Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
U-Substitution
Integration by Parts: [tex]\displaystyle \int {u} \, dv = uv - \int {v} \, du[/tex]
- [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig
Area of a Region Formula: [tex]\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx[/tex]
Step-by-step explanation:
*Note:
It is given that the area under the concentration curve is equal to the bioavailability.
Step 1: Define
Identify
[tex]\displaystyle C = 15te^{-0.2t} \\\left[ 0 ,\ 3 \right][/tex]
Step 2: Integrate Pt. 1
- Substitute in variables [Area of a Region Formula]: [tex]\displaystyle \int\limits^3_0 {15te^{-0.2t}} \, dt[/tex]
- [Integral] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int\limits^3_0 {15te^{-0.2t}} \, dt = 15 \int\limits^3_0 {te^{-0.2t}} \, dt[/tex]
Step 3: Integrate Pt. 2
Identify variables for integration by parts using LIPET.
- Set u: [tex]\displaystyle u = t[/tex]
- [u] Differentiate [Basic Power Rule]: [tex]\displaystyle du = dt[/tex]
- Set dv: [tex]\displaystyle dv = e^{-0.2t} \ dt[/tex]
- [dv] Exponential Integration [U-Substitution]: [tex]\displaystyle v = \frac{-e^{-0.2t}}{0.2}[/tex]
Step 4: Integrate Pt. 3
- [Integral] Integration by Parts: [tex]\displaystyle \int\limits^3_0 {15te^{-0.2t}} \, dt = 15 \Bigg[ \frac{-te^{-0.2t}}{0.2} \bigg| \limits^3_0 - \int\limits^3_0 {\frac{-e^{-0.2t}}{0.2}} \, dt \Bigg][/tex]
- [Integral] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int\limits^3_0 {15te^{-0.2t}} \, dt = 15 \Bigg[ \frac{-te^{-0.2t}}{0.2} \bigg| \limits^3_0 + \frac{1}{0.2} \int\limits^3_0 {e^{-0.2t}} \, dt \Bigg][/tex]
Step 5: Integrate Pt. 4
Identify variables for u-substitution.
- Set u: [tex]\displaystyle u = -0.2t[/tex]
- [u] Differentiation [Basic Power Rule, Multiplied Constant]: [tex]\displaystyle du = -0.2 \ dt[/tex]
- [Limits] Switch: [tex]\displaystyle \left \{ {{t = 3 ,\ u = -0.2(3) = -0.6} \atop {t = 0 ,\ u = -0.2(0) = 0}} \right.[/tex]
Step 6: Integrate Pt. 5
- [Integral] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int\limits^3_0 {15te^{-0.2t}} \, dt = 15 \Bigg[ \frac{-te^{-0.2t}}{0.2} \bigg| \limits^3_0 - \frac{1}{0.04} \int\limits^3_0 {-0.2e^{-0.2t}} \, dt \Bigg][/tex]
- [Integral] U-Substitution: [tex]\displaystyle \int\limits^3_0 {15te^{-0.2t}} \, dt = 15 \Bigg[ \frac{-te^{-0.2t}}{0.2} \bigg| \limits^3_0 - \frac{1}{0.04} \int\limits^{-0.6}_0 {e^{u}} \, du \Bigg][/tex]
- [Integral] Exponential Integration: [tex]\displaystyle \int\limits^3_0 {15te^{-0.2t}} \, dt = 15 \Bigg[ \frac{-te^{-0.2t}}{0.2} \bigg| \limits^3_0 - \frac{1}{0.04}(e^u) \bigg| \limits^{-0.6}_0 \Bigg][/tex]
- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^3_0 {15te^{-0.2t}} \, dt = 15 \Bigg[ -8.23217 - \frac{1}{0.04}(-0.451188) \Bigg][/tex]
- Simplify: [tex]\displaystyle \int\limits^3_0 {15te^{-0.2t}} \, dt = 45.713[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration