Determine whether the trinomial is a special product, then factor completely: 16x^2+40x+2516x 2 +40x+25 Yes, \left(4x+5\right)^2(4x+5) 2 Yes, \left(16x+5\right)\left(x+5\right)(16x+5)(x+5) No, \left(4x+5\right)^2(4x+5) 2 No, \left(16x+5\right)\left(x+5\right)(16x+5)(x+5)

Respuesta :

Answer:

[tex](4x+5)^2[/tex]

Step-by-step explanation:

A special product or perfect square trinominals are of the form

[tex](a+b)^2=a^2+2ab+b^2[/tex]

Now, we will transform a little given trinominal and get the following:

[tex]16x^2+40x+25=(4x)^2+2*4x*5+5^2=(4x+5)^2[/tex]

Here, in our case [tex]a=4x[/tex] and [tex]b=5[/tex] and on this way we got that given trinominal is a perfect square.