Using the results of the Arrhenius analysis (Ea=93.1kJ/molEa=93.1kJ/mol and A=4.36×1011M⋅s−1A=4.36×1011M⋅s−1), predict the rate constant at 332 KK . Express the rate constant in liters per mole-second to three significant figures.

Respuesta :

Answer:

k = 4.21 * 10⁻³(L/(mol.s))

Explanation:

We know that

k = Ae[tex]^{-E/RT}[/tex] ------------------- euqation (1)

K= rate constant;

A = frequency factor = 4.36 10^11 M⁻¹s⁻¹;

E = activation energy = 93.1kJ/mol;

R= ideal gas constant = 8.314 J/mol.K;

T= temperature = 332 K;

Put values in equation 1.

k = 4.36*10¹¹(M⁻¹s⁻¹)e[tex]^{[(-93.1*10^3)(J/mol)]/[(8.314)(J/mol.K)(332K)}[/tex]

k = 4.2154 * 10⁻³(M⁻¹s⁻¹)

here M =mol/L

k = 4.21 * 10⁻³((mol/L)⁻¹s⁻¹)

 or

k = 4.21 * 10⁻³((L/mol)s⁻¹)

or

k = 4.21 * 10⁻³(L/(mol.s))

The rate constant is obtained from the data provided in the question as 9.80 ×10^-4Lmol-1s-1.

Using the Arrhenius equation;

k = Ae^-Ea/RT

k = Rate constant

A = Pre-exponential factor

Ea = activation energy

R = gas constant

T = Temperature in Kelvin

Substituting values;

k = 4.36×10^11e^-(93.1 × 10^3/8.314 × 332)

k = 9.80 ×10^-4Lmol-1s-1

Learn more: https://brainly.com/question/9743981