Respuesta :
Answer:
The answer is C: 14300
Note: The actual answer is 14296, and the closest to that was option C.
Explanation:
Formula to calculate forecast using Exponential smoothing:
- [tex]F_{t} = F_{t-1} + \alpha ( A_{t-1} - F_{t-1} )[/tex]
Where,
- [tex]F_{t}[/tex] = New Forecast
- [tex]F_{t-1}[/tex] = Previous period's forecast.
- [tex]\alpha[/tex] = Smoothing Constant
- [tex]A_{t-1}[/tex] = Previous period's Actual Demand.
- Calculating the forecast for period 5:
Data:
- [tex]F_{5} = ?[/tex]
- [tex]F_{t-1} = 14000[/tex]
- [tex]\alpha = 0.4[/tex]
- [tex]A_{t-1} = 14750[/tex]
Putting values in the formula:
[tex]F_{5} =[/tex] [tex]14000 + 0.4(14750-14000)[/tex]
[tex]F_{5} = 14000 + 0.4 (740)[/tex]
[tex]F_{5} = 14000 + 296[/tex]
[tex]F_{5} = 14296[/tex]
The forecast for period 5 using the exponential smoothing method is c. 14300.
Forecast for period 5
Using this formula
Forecast for period 5=Forecast for period 4+Smoothing constant of α(Demand- Forecast for period 4)
Let plug in the formula
Forecast for period 5=14,000+0.4(14750-14000)
Forecast for period 5=14,000+0.4(750)
Forecast for period 5=14,000+300
Forecast for period 5=14300
Inconclusion the forecast for period 5 using the exponential smoothing method is c. 14300.
Learn more about forecast for period 5 here:https://brainly.com/question/6991280