Answer:
Proof is as follows
Proof:
Given that , [tex]V = V_{ac} + V_{dc}[/tex]
for any function f with period T, RMS is given by
[tex]RMS = \sqrt{\frac{1}{T}\int\limits^T_0 {[f(t)]^{2} } \, dt }[/tex]
In our case, function is [tex]V = V_{ac} + V_{dc}[/tex]
[tex]RMS = \sqrt{\frac{1}{T}\int\limits^T_0 {[V_{ac} + V_{dc}]^{2} } \, dt }[/tex]
Now open the square term as follows
[tex]RMS = \sqrt{\frac{1}{T}\int\limits^T_0 {[V_{ac}^{2} + V_{dc}^{2} + 2V_{dc}V_{ac}] } \, dt }[/tex]
Rearranging terms
[tex]RMS = \sqrt{\frac{1}{T}\int\limits^T_0 {V_{dc}^{2} } \, dt + \frac{1}{T}\int\limits^T_0 {V_{ac}^{2} } \, dt + \frac{1}{T}\int\limits^T_0 {2V_{dc}V_{ac} } \, dt }[/tex]
You can see that
so
[tex]RMS = \sqrt{\frac{1}{T}TV_{dc}^{2} + [RMS~~ of~~ V_{ac}]^2 }[/tex]
[tex]RMS = \sqrt{V_{dc}^{2} + [RMS~~ of~~ V_{ac}]^2 }[/tex]
So it has been proved that given expression for root mean square (RMS) is valid