Respuesta :

Option B:

[tex]f(x)=5^{x}[/tex] is increasing function.

Solution:

A function is increasing when the f(x) value increases as x-value increases.

Option A: [tex]f(x)=\left(\frac{1}{15}\right)^{x}[/tex]

Substitute x = 1 and x = 2 in f(x).

[tex]f(1)=\left(\frac{1}{15}\right)^{1}=0.0666[/tex]

[tex]f(2)=\left(\frac{1}{15}\right)^{2}=0.0044[/tex]

0.0666 > 0.0044

Here x is increasing but f(x) is decreasing.

So, the function is not increasing.

Option B: [tex]f(x)=5^{x}[/tex]

Substitute x = 1 and x = 2 in f(x).

[tex]f(1)=5^{1}=5[/tex]

[tex]f(2)=5^{2}=25[/tex]

5 < 25

Here f(x) is increasing as x is increasing.

So, the function is increasing.

Option C: [tex]f(x)=\left(\frac{1}{5}\right)^{x}[/tex]

Substitute x = 1 and x = 2 in f(x).

[tex]f(1)=\left(\frac{1}{5}\right)^{1}=0.2[/tex]

[tex]f(2)=\left(\frac{1}{5}\right)^{2}=0.04[/tex]

0.2 > 0.04

Here x is increasing but f(x) is decreasing.

So, the function is not increasing.

Option D: [tex]f(x)=(0.5)^{x}[/tex]

[tex]f(1)=(0.5)^{1}=0.5[/tex]

[tex]f(2)=(0.5)^{2}=0.25[/tex]

0.5 > 0.25

Here x is increasing but f(x) is decreasing.

So, the function is not increasing.

Option B is the correct answer.

Hence [tex]f(x)=5^{x}[/tex] is increasing function.