Answer:
[tex]v_t=46.4532\ m.s^{-1}[/tex]
Explanation:
Given:
the time for which the ball travels:
[tex]t=\frac{x}{v_x}[/tex]
[tex]t=\frac{17.4}{42.5}[/tex]
[tex]t=0.4094\ s[/tex]
Angular speed of the ball:
[tex]\omega=\frac{\theta}{t}[/tex]
[tex]\omega=\frac{44.1}{0.4094}[/tex]
[tex]\omega=107.7155\ rad.s^{-1}[/tex]
Now the tangential speed at the equator of the ball:
[tex]v_t=r.\omega+v_x[/tex] (the tangential speed due to rotation and the linear speed are having the same direction)
[tex]v_t=0.0367\times 107.7155+42.5[/tex]
[tex]v_t=46.4532\ m.s^{-1}[/tex]