Respuesta :
Answer:
∠X = 57°, ∠Y = 66.5°, ∠Z = 56.5°
Step-by-step explanation:
step 1
Find the measure of angle X
Applying the law of cosines
[tex]x^2=y^2+z^2-2(y)(z)cos(X)[/tex]
substitute the given values
[tex]19.2^2=21^2+19.1^2-2(21)(19.1)cos(X)[/tex]
[tex]368.64=805.81-802.2cos(X)[/tex]
[tex]802.2cos(X)=805.81-368.64[/tex]
[tex]cos(X)=0.5450\\X=57.0^o[/tex]
step 2
Find the measure of angle Y
Applying the law of cosines
[tex]y^2=x^2+z^2-2(x)(z)cos(Y)[/tex]
substitute the given values
[tex]21^2=19.2^2+19.1^2-2(19.2)(19.1)cos(Y)[/tex]
[tex]441=733.45-733.44cos(Y)[/tex]
[tex]733.44cos(Y)=733.45-441[/tex]
[tex]cos(Y)=0.3987\\Y=66.5^o[/tex]
step 3
Find the measure of angle Z
Remember that the sum of the interior angles in any triangle must be equal to 180 degrees
so
[tex]X+Y+Z=180^o[/tex]
substitute the given values
[tex]57.0^o+66.5^o+Z=180^o[/tex]
solve for Z
[tex]Z=180^o-123.5^o=56.5^o[/tex]
Answer:
Triangle A. ∠X = 57°, ∠Y = 66.5°, ∠Z = 56.5°
Step-by-step explanation:
May I have brainliest please? :)