Answer:
a) P(x > 120) = 0.74537
b) P(100 < x < 110) = 0.46777
c) Value of a = 110.7
Step-by-step explanation:
Let x = amount of miraculin produced (measured in micro grams per gram of fresh weight)
We are given Mean, [tex]\mu[/tex] = 105.3 and Standard Deviation, [tex]\sigma[/tex] = 8.0
Also, since x is normally distributed so;
Z = [tex]\frac{x - \mu}{\sigma}[/tex] follows N(0,1)
a) P(x > 100) = P( [tex]\frac{x - \mu}{\sigma}[/tex] > [tex]\frac{100 - 105.3}{8.0}[/tex] ) = P(Z > -0.6625) = P(Z < 0.66) = 0.74537
b) P(100 < x < 110) = P(x < 110) - P(x <= 100)
P(x <= 100) = 1 - P(x > 100) = 1 - 0.74537 = 0.25463
P(x < 110) = P( [tex]\frac{x - \mu}{\sigma}[/tex] < [tex]\frac{110 - 105.3}{8.0}[/tex] ) = P(Z < 0.59) = 0.72240
Hence, P(100 < x < 110) = 0.72240 - 0.25463 = 0.46777
c) Given expression is P(x < a ) = 0.25
⇒ P( [tex]\frac{x - \mu}{\sigma}[/tex] < [tex]\frac{a - 105.3}{8.0}[/tex] ) = 0.25
⇒ P(Z < [tex]\frac{a - 105.3}{8.0}[/tex] ) = 0.25
By seeing the Z % table we find that the value of z which have an are of 25% is 0.6745 i.e.
[tex]\frac{a - 105.3}{8.0}[/tex] = 0.6745
So, value of a = 0.6745*8 + 105.3 = 110.7 .