Answer:
P ( x_bar > 335 ) = 0.9826
Step-by-step explanation:
Given:
- Mean amount u = 350
- standard deviation s.d = 45/year
- Sample size n = 40
Find:
- The probability of sample mean P( x_bar > 335 )
Solution:
- P ( x_bar > 335 ) = P ( Z > sqrt(n)*(x_bar - u)/s.d)
= P ( Z > sqrt(40)*(335-350)/45)
= P ( Z > -2.111) = P ( Z < 2.111)
= 0.5 + P( 0 < Z < 2.111)
= 0.5 + 0.4826
= 0.9826