An electric dipole consisting of charges of magnitude 1.50 nC separated by 6.20 mm is in an electric field of strength 1100 N/C. What are (a) the magnitude of the electric dipole moment and (b) the difference between the potential energies for dipole orientations parallel and antiparallel to E

Respuesta :

Explanation:

(a) It is known that formula for electric dipole moment is as follows.

          p = qd

             = [tex]1.50 \times 10^{-9} \times 6.2 \times 10^{-6}[/tex]

             = [tex]9.30 \times 10^{-15} Cm[/tex]

Hence, magnitude of the electric dipole moment is [tex]9.30 \times 10^{-15} Cm[/tex].

(b) Now, formula to calculate the difference in potential energy is as follows.

             [tex]\Delta U = U_{F} - U_{I}[/tex]

                         = -pE Cos 180 + pE Cos 0

                         = 2pE

                         = [tex]2 \times 9.30 \times 10^{-15} Cm \times 1100 N/C[/tex]

                         = [tex]2.05 \times 10^{-11} J[/tex]

Thus, we can conclude that difference between the potential energies for dipole orientations parallel and antiparallel to E is [tex]2.05 \times 10^{-11} J[/tex].

a. The magnitude of the electric dipole moment is [tex]9.3*10^{-12}[/tex] C-m

b. The difference between the potential energies for dipole orientations       parallel and antiparallel to E is [tex]18.6*10^{-12}[/tex] C-m

a. The electric dipole is calculated as,

                            [tex]P=q*d[/tex]

Where q is charge and d is distance between charges.

Given that, [tex]q=1.5nC=1.5*10^{-9}C,d=6.2mm=6.2*10^{-3}m[/tex]

Substitute values in formula,

                 [tex]P=1.5*10^{-9}*6.2*10^{-3}=9.3*10^{-12} C-m[/tex]

b. The difference between the potential energies for dipole orientations parallel and antiparallel to E is,

              [tex]V=qd*cos(0)-qd*cos(180)\\\\V=qd+qd=2qd=2P[/tex]

          [tex]V=2P=2*9.3*10^{-12} =18.6*10^{-12}[/tex]

Learn more:

https://brainly.com/question/16287216