contestada

If aluminum is diffused into a thick slice of silicon with no previous aluminum in it at a temperature of 1100°C for 206 minutes, what is the depth below the surface at which the concentration is 1016 atoms/cm3? if the surface concentration is 1018 atoms/cm^3?

Respuesta :

Answer:

the depth below the silicon surface at which the aluminum concentration would be [tex]10^{16}[/tex] atoms/[tex]cm^{3}[/tex] is [tex]5.723*10^{-6}[/tex]

Explanation:

The concentrations of a diffusing element in a silicon wafer at any particular position below the surface and  the time it takes to reach that concentration has a relationship given by Fick's second law

                        [tex]\frac{C_{s}-C_{s}}{C_{x}-C_{0}}=erf(\frac{x}{2\sqrt{Dt} } ) ...(1)[/tex]

Where

The concentration of the carbon on the gear surface is [tex]C_{s}[/tex]

The initial uniform (normal) concentration of carbon in the gear is [tex]C_{0}[/tex]

The  concentration of carbon at a distance x below the gear surface after time t is [tex]C_{x}[/tex]

 Distance below the gear surface is x

Diffusivity of carbon at a given temperature is D

Time is t

erf is a mathematical function called error function

The impurity diffusion is a method in which an impurity is diffused into a silicon wafer at a very high temperature.The given values are

           [tex]C_{s}[/tex] = [tex]10^{18}[/tex] atoms/[tex]cm^{3}[/tex]

          [tex]C_{0}[/tex] = 0 atoms/[tex]cm^{3}[/tex]

          [tex]C_{x}[/tex] = [tex]10^{16}[/tex] atoms/[tex]cm^{3}[/tex]

         t = 206 minutes = 12360 s  [1 minutes= 60 seconds ]

For an aluminum diffusing in silicon at 11100°C  Diffusivity is [tex]=2*10^{-12} cm^{2}/s[/tex]

Substituting these values we have

                 [tex]\frac{10^{18}-10^{16}}{10^{18}-0}[\frac{x}{2\sqrt{2*10^{-12}cm^{2}/s[\frac{10^{-4}m^{2}}{1cm^{2}} ]*12360s} } ][/tex]

            [tex]0.99 =erf[\frac{x}{3.145*10^{-6}} ][/tex]

Let assume [tex]R = [\frac{x}{3.145*10^{-6}} ][/tex]

  Hence

            [tex]erf(R) = 0.99[/tex]

         [tex]R = [\frac{x}{3.145*10^{-6}} ] ...(2)[/tex]

To determine for what number the  error function is 0.99

The table on the first uploaded image is a table that error function for some number

Where z is the same thing as R

calculating the R (i.e z) value whose error function is 0.99 , using the interpolation method we have

                [tex]\frac{R-1.8}{1.9-1.8}=\frac{0.9900-0.9891}{0.9928-0.9891}[/tex]

                 [tex]\frac{R-1.8}{0.1}=0.2432[/tex]

                   [tex]R = 1.82[/tex]

Substituting the value of R in the equation 2 we have

                       [tex]1.82 = [\frac{x}{3.145*10^{-6}} ][/tex]

                       [tex]x = 1.82*3.145*10^{-6}[/tex]

                       [tex]x = 5.723*10^-6m[/tex]

So therefore the value of  x is [tex]5.723*10^{-6}[/tex]

Hence the depth below the silicon surface at which the aluminum concentration would be [tex]10^{16}[/tex] atoms/[tex]cm^{3}[/tex] is [tex]5.723*10^{-6}[/tex]

Ver imagen okpalawalter8