Respuesta :

The value of x is 8.

Solution:

Given [tex]\triangle V D G \sim \triangle V N Q[/tex].

DG = 60, NQ = 48, DN = 15, NV = x + 4

To find the value of x:

Property of similar triangle:

If two triangles are similar then the corresponding angles are congruent and the corresponding sides are in proportion.

[tex]$\Rightarrow\frac{DG}{NQ} =\frac{DN}{NV}[/tex]

[tex]$\Rightarrow\frac{60}{48} =\frac{15}{x+4}[/tex]

Do cross multiplication.

[tex]$\Rightarrow60(x+4)=15\times48[/tex]

[tex]$\Rightarrow60x+240=720[/tex]

Subtract 240 from both side of the equation.

[tex]$\Rightarrow60x+240-240=720-240[/tex]

[tex]$\Rightarrow60x=480[/tex]

Divide by 60 on both sides of the equation.

[tex]$\Rightarrow\frac{60x}{60} =\frac{480}{60}[/tex]

[tex]$\Rightarrow x=8[/tex]

Hence the value of x is 8.