A rectangular pool is 30 feet wide and 40 feet long. It is surrounded on all four sides by a wooden deck that is x feet wide. The total area enclosed within the perimeter of the deck is 2000 square feet. What is the width of the deck?

Respuesta :

Answer:

5 feet

Step-by-step explanation:

We are given that

Width of rectangular pool=b=30 feet

Length of rectangular pool=l=40 feet

Area of rectangle=[tex]l\times b[/tex]

Using the formula

Area of rectangular pool=[tex]30\times 40=1200ft^2[/tex]

Total area enclosed within the perimeter of  the deck=[tex]2000ft^2[/tex]

Width of deck=x ft

Length of rectangular pool including wooden deck=40+2x ft

Width of  rectangular pool including wooden deck=30+2x ft

Area of rectangular pool including wooden deck=[tex](40+2x)(30+2x)[/tex]

According to question

[tex](40+2x)(30+2x)=2000[/tex]

[tex]40(30)+2x(30)+40(2x)+2x(2x)=2000[/tex]

[tex]1200+60x+80x+4x^2=2000[/tex]

[tex]140x+4x^2=2000-1200=800[/tex]

[tex]4x^2+140x-800=0[/tex]

[tex]x^2+35x-200=0[/tex] (Dividing by 4 on both sides)

[tex]x^2+40x-5x-200=0[/tex]

[tex]x(x+40)-5(x+40)=0[/tex]

[tex](x+40)(x-5)=0[/tex]

[tex]x+40=0[/tex]

[tex]x=-40[/tex]

It is not possible because width cannot be negative it is always natural number.

[tex]x-5=0\implies x=5[/tex]

Hence, the width of the deck=5 ft