Respuesta :

Answer:

A, D , and E

Step-by-step explanation:

We have that:

[tex]\overline{CD} = 12 \: units[/tex]

[tex]\overline{C'D'}[/tex]

is the image of CD after a dilation of scale factor n.

We use the relation between the image length and object length:

[tex]\overline{C'D'} = n \times \overline{CD}[/tex]

Option A

If n=3/2, then

[tex]\overline{C'D'} = \frac{3}{2} \times 12 = 3 \times 6 = 18 \: units[/tex]

This is true.

Option B

If n=4, then

[tex] \overline{C'D'} = 4 \times 12 = 36 \: units[/tex]

This is false.

Option C

If n=8, then

[tex] \overline{C'D'} = 8 \times 12 = 96 \: units[/tex]

This too is false.

Option D

If n=2, then

[tex]\overline{C'D'} = 2 \times 12 = 24 \: units[/tex]

This is true

Option E

If n=3/4, then

[tex]\overline{C'D'} = \frac{3}{4} \times 12[/tex]

[tex]\overline{C'D'} = 3 \times 3 = 9 \: units[/tex]

This is also true.

Answer: A,D,E

Step-by-step explanation:

took the test