A fish has a triangular tooth with a height that is 6 centimeters longer than the base. If the area of the tooth is 36 square centimeters, find its base and height

Respuesta :

Answer:

The base and height of the triangular tooth of the fish are 6 centimetres and 12 centimetres respectively

Step-by-step explanation:

Given:

The height of the  fish tooth =  6 centimetres longer than the base

Area of the tooth  = 36 square centimetres

To Find:

The base and height of the fish tooth = ?

Solution:

The area of the triangular tooth  = area of the triangle

Then

The area of the triangular tooth = [tex]\frac{1}{2}(base \times height)[/tex]

Let the base be x centimetres, then is height is (x+6) centimetres

On substituting the given values,

[tex]36 = \frac{1}{2}[(x) \times (x +6)][/tex]

[tex]36 = \frac{x^2 +6x}{2}[/tex]

[tex]72 = x^2 + 6x[/tex]

[tex]x^2 +6x -72 = 0[/tex]

Solving using the quadratic formula we get

[tex]x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}[/tex]

[tex]x = \frac{-6 \pm \sqrt{(6)^2-4(1)(-72)}}{2(1)}[/tex]

[tex]x = \frac{-6 \pm \sqrt{36 +288}}{2}[/tex]

[tex]x = \frac{-6 \pm \sqrt{324}}{2}[/tex]

[tex]x = \frac{-6 \pm 18}{2}[/tex]

[tex]x= \frac{-6 + 18}{2}[/tex]                            [tex]x= \frac{-6 - 18}{2}[/tex]

[tex]x= \frac{ 12}{2}[/tex]                                  [tex]x= \frac{-24}{2}[/tex]

x = 6                                    x = - 12

Neglecting the negative value, we have

base is 6 centimetres

Then height will be   (x+6) = (6+6) = 12 centimetres