contestada

If f (x) = StartRoot x minus 3 EndRoot, which inequality can be used to find the domain of f(x)? Options Below
A. StartRoot x minus 3 EndRoot greater-than-or-equal-to 0
B. x minus 3 greater-than-or-equal-to 0
C. StartRoot x minus 3 EndRoot less-than-or-equal-to 0
D. x minus 3 less-than-or-equal-to 0

Respuesta :

The inequality [tex]x-3 \geq 0[/tex]  can be used to find the domain of [tex]f(x)=\sqrt{x-3}[/tex]

Answer: Option B

Step-by-step explanation:

We have [tex]f(x)=\sqrt{x-3}[/tex], domain is the set of all possible x-values which will make the function "work", and will output real y-values. Basically to find domain of any function means to find range of values of x that will give real values of y.

For the equation  [tex]f(x)=\sqrt{x-3}[/tex] , we know that there's no value  ( iota or complex numbers are there but here we will deal with real numbers ) of negative numbers under square root  

[tex]{(} x-3 {)}[/tex] must be greater than or equal to 0.

⇒ [tex]x-3 \geq 0[/tex]

Answer:

B

Step-by-step explanation: