Respuesta :

Answer:

5 g is left after 16 years

3.54 g is left after 20 years

Explanation:

Given that:

Half life = 8 years

[tex]t_{1/2}=\frac{\ln 2}{k}[/tex]

Where, k is rate constant

So,  

[tex]k=\frac{\ln2}{t_{1/2}}[/tex]

[tex]k=\frac{\ln2}{8}\ year^{-1}[/tex]

The rate constant, k = 0.0866 year⁻¹

Using integrated rate law for first order kinetics as:

[tex][A_t]=[A_0]e^{-kt}[/tex]

Where,  

[tex][A_t][/tex] is the concentration at time t

[tex][A_0][/tex] is the initial concentration  = 20 g

Time = 16 years

So,  

[tex][A_t]=20\times e^{-0.0866\times 16}\ g=5\ g[/tex]

5 g is left after 16 years

Time = 20 years

So,  

[tex][A_t]=20\times e^{-0.0866\times 20}\ g=3.54\ g[/tex]

3.54 g is left after 20 years