Answer:
[tex]P=21.148 bar[/tex]
Explanation:
Given parameters are ;
Molar Volume (V_m) = 2.10 L
Temperature (T) = 610 K
a = 452.0 bar dm⁶mol⁻²/[tex]K^{(1/2)[/tex]
b = 0.08271 dm³ mol⁻¹
Our given formula to use is Redlich-Kwong equation of state, which is given as:
[tex]P = \frac{RT}{V_m-b}-\frac{a}{\sqrt{T} } *\frac{1}{V_m(V_m+b)} =\frac{nRT}{V-nb}-\frac{n^2a}{\sqrt{T} }\frac{1}{V(V+nb)}[/tex]
[tex]P = \frac{RT}{V_m-b}-\frac{a}{\sqrt{T} } *\frac{1}{V_m(V_m+b)}[/tex]
[tex]P = \frac{8.314*10^{-2} bardm^3mol^{-1}k^{-1}*610K}{2.10dm^3mol^{-1}-0.08271dm^3mol^{-1}}-\frac{452bardm^6mol^{-2}K^{1/2}}{\sqrt{610K} } *\frac{1}{2.10dm^3mol^{-1}(2.10dm^3mol^{-1}+0.08271dm^3mol^-}[/tex]
[tex]P = \frac{50.72}{2.01729}- 18.30095*0.2182[/tex]
[tex]P= 25.14-3.992[/tex]
[tex]P=21.148 bar[/tex]