Respuesta :

Answer

[tex]\int_{0}^{6}\sqrt{1+12x^4+8x^2}dx[/tex]

Step-by-step explanation:

We are given that

[tex]y=\frac{1}{3}(3x^2+2)^{\frac{3}{2}}[/tex]

Interval=[0,6]

a=0 and b=6

Differentiate w.r. t x

[tex]\frac{dy}{dx}=\frac{1}{3}(3x^2+2)^{\frac{1}{2}}\times 6x=2x(3x^2+2)^{\frac{1}{2}}[/tex]

By using the formula ;[tex]\frac{dx^n}{dx}=nx^{n-1}[/tex]

We know that arc length of curve  

[tex]s=\int_{a}^{b}\sqrt{1+(\frac{dy}{dx})^2}dx[/tex]

Substitute the values

[tex]s=\int_{0}^{6}\sqrt{1+(2x(3x^2+2)^{\frac{1}{2}})^2}dx[/tex]

[tex]s=\int_{0}^{6}\sqrt{1+4x^2(3x^2+2)}dx[/tex]

[tex]s=\int_{0}^{6}\sqrt{1+12x^4+8x^2}dx[/tex]

Length of curve,=[tex]s=\int_{0}^{6}\sqrt{1+12x^4+8x^2}dx[/tex]