Respuesta :
Answer:
Total Work=2275000 ft-lb
Explanation:
According to Riemann sum approximate for work needed to lift the cable:
[tex]W= \lim_{n \to \infty} \sum_{i=1}^n8x_i\Delta x[/tex]
Sine we have to add 650 terms because distance 650 ft, we will us the integration.
[tex]W=\int\limits^a_b {f(x)} \, dx \\W=\int\limits^{650}_0 {8x} \, dx \\W=[4x^2]_0^{650}\\W=4(650)^2-0^2\\W=4*422500 ft-lb\\W=1690000 ft-lb[/tex]
Work done on lifting:
[tex]W_1=900*650\\W_1=585000 ft-lb[/tex]
Total Work= [tex]W+W_1[/tex]
Total Work=1690000+585000
Total Work=2275000 ft-lb
The work done will be "2275000 ft-lb".
As per the Riemann sum,
→ [tex]W = lim_{n \rightarrow \infty} \sum^n_{i=1} 8x_i \Delta x[/tex]
By applying integration,
→ [tex]W = \int\limits^a_b {f(x)} \, dx[/tex]
[tex]W = \int\limits^{650}_b {8x} \, dx[/tex]
[tex]= [4x^2]^{650}_0[/tex]
[tex]= 4(650)^2-0^2[/tex]
[tex]= 4\times 422500[/tex]
[tex]= 1690000 \ ft-lb[/tex]
On lifting, the work done be;
→ [tex]W_1 = 900\times 650[/tex]
[tex]= 585000 \ ft-lb[/tex]
hence,
The total work done will be:
= [tex]W+W_1[/tex]
By putting the values,
= [tex]1690000+585000[/tex]
= [tex]2275000 \ ft-lb[/tex]
Thus the approach above is right.
Learn more about work done here:
https://brainly.com/question/16852795