Respuesta :

Answer:

32.66 units

Step-by-step explanation:

We are given that

[tex]y=6x^2+14x[/tex]

Point A=(-2,-4) and point B=(1,20)

Differentiate w.r. t x

[tex]\frac{dy}{dx}=12x+14[/tex]

We know that length of curve

[tex]s=\int_{a}^{b}\sqrt{1+(\frac{dy}{dx})^2}dx[/tex]

We have a=-2 and b=1

Using the formula

Length of curve=[tex]s=\int_{-2}^{1}\sqrt{1+(12x+14)^2}dx[/tex]

Using substitution method

Substitute t=12x+14

Differentiate w.r t. x

[tex]dt=12dx[/tex]

[tex]dx=\frac{1}{12}dt[/tex]

Length of curve=[tex]s=\frac{1}{12}\int_{-2}^{1}\sqrt{1+t^2}dt[/tex]

We know that

[tex]\sqrt{x^2+a^2}dx=\frac{x\sqrt {x^2+a^2}}{2}+\frac{1}{2}\ln(x+\sqrt {x^2+a^2})+C[/tex]

By using the formula

Length of curve=[tex]s=\frac{1}{12}[\frac{t}{2}\sqrt{1+t^2}+\frac{1}{2}ln(t+\sqrt{1+t^2})]^{1}_{-2}[/tex]

Length of curve=[tex]s=\frac{1}{12}[\frac{12x+14}{2}\sqrt{1+(12x+14)^2}+\frac{1}{2}ln(12x+14+\sqrt{1+(12x+14)^2})]^{1}_{-2}[/tex]

Length of curve=[tex]s=\frac{1}{12}(\frac{(12+14)\sqrt{1+(26)^2}}{2}+\frac{1}{2}ln(26+\sqrt{1+(26)^2})-\frac{12(-2)+14}{2}\sqrt{1+(-10)^2}-\frac{1}{2}ln(-10+\sqrt{1+(-10)^2})[/tex]

Length of curve=[tex]s=\frac{1}{12}(13\sqrt{677}+\frac{1}{2}ln(26+\sqrt{677})+5\sqrt{101}-\frac{1}{2}ln(-10+\sqrt{101})[/tex]

Length of curve=[tex]s=32.66[/tex]