Respuesta :

The value of x is  [tex]\frac{8}{3}[/tex]

 Explanation:

The expression is  [tex]\log _{2}(9 x)-\log _{2}(3)=3[/tex]  

Adding  [tex]\log _{2}(3)[/tex] to both sides of the equation,  we get,

[tex]\log _{2}(9 x)=3+\log _{2}(3)[/tex]

Using log definition, if  [tex]\log _{a}(b)=c[/tex]  then  [tex]b=a^{c}[/tex] , we have,

 [tex]9 x=2^{3+\log _{2}(3)}[/tex]

Using exponent rule, [tex]a^{b+c}=a^{b} a^{c}[/tex],

[tex]9x=2^{\log _{2}(3)} \cdot 2^{3}[/tex]

Simplifying, we have,

[tex]9x=3\cdot8\\9x=24[/tex]

Dividing both sides by 9, we have,

[tex]x=\frac{24}{9}[/tex]

Simplifying,

[tex]x=\frac{8}{3}[/tex]

Thus, the value of x is [tex]\frac{8}{3}[/tex]

Answer:

B = 8/3

Step-by-step explanation:

Just did the test on edge 2020