Which expression is equivalent to log Subscript w Baseline StartFraction (x squared minus 6) Superscript 4 Baseline Over RootIndex 3 StartRoot x squared + 8 EndRoot EndFraction?
4 log Subscript w Baseline StartFraction x squared Over 1296 EndFraction minus one-third log Subscript w Baseline (2 x + 8)
4 log Subscript w Baseline (x squared minus 6) minus one-third log Subscript w Baseline (x squared + 8)
4 log Subscript w Baseline (X squared minus 6) minus one-third log Subscript w Baseline (x squared + 8)
4 (log Subscript w Baseline x squared minus one-third log Subscript w Baseline (x squared + 8) minus 6)

Respuesta :

Option b: [tex]4 \log _{w}\left(x^{2}-6\right)-\frac{1}{3} \log _{w}({x^{2}+8})[/tex] is the correct answer.

Explanation:

The expression is [tex]\log _{w}\left(\frac{\left(x^{2}-6\right)^{4}}{\sqrt[3]{x^{2}+8}}\right)[/tex]

Applying log rule, [tex]\log _{c}\left(\frac{a}{b}\right)=\log _{c}(a)-\log _{c}(b)[/tex], we get,

[tex]\log _{w}\left(\left(x^{2}-6\right)^{4}\right)-\log _{w}(\sqrt[3]{x^{2}+8})[/tex]

Again applying the log rule, [tex]\log _{a}\left(x^{b}\right)=b\cdot\log _{a}(x)[/tex], we get,

[tex]4 \log _{w}\left(x^{2}-6\right)-\log _{w}(\sqrt[3]{x^{2}+8})[/tex]

The cube root can be written as,

[tex]4 \log _{w}\left(x^{2}-6\right)-\log _{w}({x^{2}+8})^{\frac{1}{3} }[/tex]

Applying the log rule, [tex]\log _{a}\left(x^{b}\right)=b\cdot\log _{a}(x)[/tex], we have,

[tex]4 \log _{w}\left(x^{2}-6\right)-\frac{1}{3} \log _{w}({x^{2}+8})[/tex]

Thus, the expression which is equivalent to [tex]\log _{w}\left(\frac{\left(x^{2}-6\right)^{4}}{\sqrt[3]{x^{2}+8}}\right)[/tex] is [tex]4 \log _{w}\left(x^{2}-6\right)-\frac{1}{3} \log _{w}({x^{2}+8})[/tex]

Hence, Option b is the correct answer.

Answer:

its c

Step-by-step explanation: