Which is the value of this expression when j = negative 2 and k = negative 1?

(StartFraction j k Superscript negative 2 Baseline Over j Superscript negative 1 Baseline k Superscript negative 3 Baseline EndFraction) cubed

Respuesta :

Answer:

-64

Step-by-step explanation:

The expression is written as

[tex]\displaystyle \left (\frac{j\ k^{-2}}{j^{-1}\ k^{-3}}\right )^3[/tex]

We need to apply the rules of power of power in algebra:

[tex](x^m)^n=x^{m.n}[/tex]

Also, we apply the quotient of variables

[tex]\displaystyle \left (\frac{x^m}{x^n}\right )=x^{m-n}[/tex]

Let's simplify the given expression

[tex]\displaystyle \left (\frac{j^3\ k^{-6}}{j^{-3}\ k^{-9}}\right)[/tex]

[tex]=j^{3+3}k^{-6+9}[/tex]

[tex]=j^6k^3[/tex]

For j=-2 and k=-1

[tex]=(-2)^6(-1)^3[/tex]

[tex]=64\times(-1)[/tex]

[tex]\boxed{-64}[/tex]

Answer:

A.

Step-by-step explanation: