Complete the steps to evaluate the following expression, given log3a = −0.631.

[tex]\log _{3}(3)=1[/tex] and [tex]\log _{3} \frac{a}{3}=-1.631[/tex]
Solution:
Given value [tex]\log _{3} a=-0.631[/tex].
To evaluate the expression [tex]\log _{3} \frac{a}{3}[/tex].
Using logarithmic rule: [tex]\log _{b}\left(\frac{M}{N}\right)=\log _{b}(M)-\log _{b}(N)[/tex]
[tex]$\log _{3} \frac{a}{3}=\log _{3}(a)-\log _{3}(3)[/tex]
We know that [tex]\log _{3} a=-0.631[/tex].
[tex]$\log _{3} \frac{a}{3}=-0.631-\log _{3}(3)[/tex]
Using another logarithmic rule: [tex]\log _{b} b=1[/tex]
[tex]$\log _{3} \frac{a}{3}=-0.631-1[/tex]
[tex]$\log _{3} \frac{a}{3}=-1.631[/tex]
Hence [tex]\log _{3}(3)=1[/tex] and [tex]\log _{3} \frac{a}{3}=-1.631[/tex].
To solve the problem, the concept of logarithmic must be known.
the value of a and [tex]\rm log_3 (a/3)[/tex] is 0.5 and -1.630.
The logarithmic function is the inverse of the exponential function.
Given
[tex]\rm log_3a = -0.634[/tex] is a logarithmic function.
To find
The value of a.
We know the logarithmic property.
[tex]\rm b^{log_ba} =a[/tex]
Then according to the property,
[tex]\begin{aligned} \rm 3^{log_3a} &= 3^{-0.631}\\\\\rm a &= 3^{-0.631}\\\\\rm a &= 0.5\end{aligned}[/tex]
Then
[tex]\rm log_3 \dfrac{a}{3} \\\\\rm log_3 \dfrac{0.5}{3} \\\\\rm log_3 0.167\\\\-1.63[/tex]
Thus, the value of a and [tex]\rm log_3 (a/3)[/tex] is 0.5 and -1.630.
More about the logarithmic function link is given below.
https://brainly.com/question/3072484