Respuesta :

frika

Answer:

[tex]K=-2J+24[/tex]

Step-by-step explanation:

Trend line passes through the points (6,12) and (4,16).

Find the slope of the line:

[tex]m=\dfrac{K_2-K_1}{J_2-J_1}=\dfrac{16-12}{4-6}=\dfrac{4}{-2}=-2[/tex]

Write the equation of the line in the form [tex]K=mJ+b,[/tex] where the slope [tex]m=-2:[/tex]

[tex]K=-2J+b[/tex]

This line passes through the point (6,12), then its coordinates satisfy the equation:

[tex]12=-2\cdot 6+b\\ \\12=-12+b\\ \\b=12+12\\ \\b=24\\ \\K=-2J+24[/tex]