Respuesta :

Option C:

x = 0

Solution:

Given equation : [tex]\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4)[/tex]

To find the value of x from the given equation.

[tex]$\frac{1}{2}(x-14)+11=\frac{1}{2} x-(x-4)[/tex]

[tex]$\Rightarrow\frac{1}{2}x-7+11=\frac{1}{2} x-x+4[/tex]

[tex]$\Rightarrow\frac{1}{2} x+4=-\frac{1}{2} x+4[/tex]

Subtract 4 from both sides of the equation.

[tex]$\Rightarrow\frac{1}{2} x+4-4=-\frac{1}{2} x+4-4[/tex]

[tex]$\Rightarrow\frac{1}{2} x=-\frac{1}{2} x[/tex]

Arrange like terms in one side of the equation.

Negative term changed to positive term when it goes to left side of the equation.

[tex]$\Rightarrow\frac{1}{2} x+\frac{1}{2} x=0[/tex]

[tex]$\Rightarrow\frac{1+1}{2} x=0[/tex]

[tex]$\Rightarrow\frac{2}{2} x=0[/tex]

[tex]$\Rightarrow x=0[/tex]

Option C is the correct answer.

The value of x is 0.