Find the x-intercepts of the parabola with
vertex (1,-13) and y-intercept (0.-11).
Write your answer in this form: (X1.),(X2,92).
If necessary, round to the nearest hundredth.
Enter the correct answer.​

Respuesta :

Answer:

[tex]x_1=3.55[/tex]

[tex]x_2=-1.55[/tex]

Step-by-step explanation:

we know that

If the vertex is  (1,-13) and the y-intercept is  (0.-11) (y-intercept above the vertex), we have a vertical parabola open upward

The equation of a vertical parabola written in vertex form is equal to

[tex]y=a(x-h)^2+k[/tex]

where

a is a coefficient

(h,k) is the vertex

substitute the given value of the vertex

[tex]y=a(x-1)^2-13[/tex]

Find the value of a

Remember that we have the y-intercept

For x=0, y=-11

substitute

[tex]-11=a(0-1)^2-13[/tex]

[tex]a=13-11\\a=2[/tex]

so

[tex]y=2(x-1)^2-13[/tex]

Find the x-intercepts

For y=0

[tex]2(x-1)^2-13=0[/tex]

[tex]2(x-1)^2=13[/tex]

[tex](x-1)^2=6.5[/tex]

[tex]x-1=\pm\sqrt{6.5}[/tex]

[tex]x=1\pm\sqrt{6.5}[/tex]

[tex]x_1=1+\sqrt{6.5}=3.55[/tex]

[tex]x_2=1-\sqrt{6.5}=-1.55[/tex]