Respuesta :

Answer:

Option C [tex]-6<x\leq -3[/tex]

Step-by-step explanation:

we have

[tex]21\leq -3(x-4)<30[/tex]

The compound inequality can be divided into two inequality

[tex]21\leq -3(x-4)[/tex] -----> inequality A

[tex]-3(x-4)<30[/tex] ----> inequality B

Solve inequality A

[tex]21\leq -3x+12[/tex]

[tex]9\leq -3x[/tex]

Divide by -3 both sides

when you multiply or divide both sides of an inequality by a negative number, you must reverse the inequality symbol

[tex]-3\geq x[/tex]

Rewrite

[tex]x\leq -3[/tex]

The solution of the inequality A is the interval (-∞,-3]

Solve the inequality B

[tex]-3x+12<30[/tex]

[tex]-3x<18[/tex]

Divide by -3 both sides

when you multiply or divide both sides of an inequality by a negative number, you must reverse the inequality symbol

[tex]x>-6[/tex]

The solution of the inequality B is the interval [-6,∞)

The solution of the compound inequality is

[-6,∞) ∩ (-∞,-3]=(-6,-3]

[tex]-6<x\leq -3[/tex]