Respuesta :

Answer : The rate of consumption of [tex]S_2O_2^{-8}[/tex] is, [tex]7.0\times 10^{-6}M/s[/tex]

Explanation : Given,

Moles of [tex]S_2O_2^{-8}[/tex] = [tex]2.0\times 10^{-4}mol[/tex]

Volume of solution = 170 mL = 0.170 L     (1 L = 1000 mL)

Time = 170 s

First we have to calculate the concentration.

[tex]\text{Concentration}=\frac{\text{Moles}}{\text{Volume of solution}}[/tex]

[tex]\text{Concentration}=\frac{2.0\times 10^{-4}mol}{0.170L}[/tex]

[tex]\text{Concentration}=1.2\times 10^{-3}M[/tex]

Now we have to calculate the rate of consumption.

[tex]\text{Rate of consumption}=\frac{\text{Concentration}}{\text{Time}}[/tex]

[tex]\text{Rate of consumption}=\frac{1.2\times 10^{-3}M}{170s}[/tex]

[tex]\text{Rate of consumption}=7.0\times 10^{-6}M/s[/tex]

Thus, the rate of consumption of [tex]S_2O_2^{-8}[/tex] is, [tex]7.0\times 10^{-6}M/s[/tex]

The rate of consumption of S2O2−8 is 7.0*10^-6 m/s.

Calculation of the rate of consumption:

Since

Moles 2.0×10−4

Volume of solution = 170 mL = 0.170 L     (1 L = 1000 mL)

Time = 170 s

Now first determine the concentration

So here concentration = moles / volume of solution

= 2.0×10−4  / 0.170L

= 1.2*10^-3

Now the rate of consumption is

= Concentration /time

= 1.2*10^-3 / 170 s

= 7.0*10^-6 m/s.

Learn more about concentration here: https://brainly.com/question/918154