Respuesta :

Answer:

see explanation

Step-by-step explanation:

Using the sine and cosine ratios in the right triangle and the exact values

sin60° = [tex]\frac{\sqrt{3} }{2}[/tex] and cos60° = [tex]\frac{1}{2}[/tex], then

sin60° = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{BC}{AC}[/tex] = [tex]\frac{BC}{10}[/tex] = [tex]\frac{\sqrt{3} }{2}[/tex] ( cross- multiply )

2BC = 10[tex]\sqrt{3}[/tex] ( divide both sides by 2 )

BC = 5[tex]\sqrt{3}[/tex]

------------------------------------------------------------------------

cos60° = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{AB}{AC}[/tex] = [tex]\frac{AB}{10}[/tex] = [tex]\frac{1}{2}[/tex] ( cross- multiply )

2AB = 10 ( divide both sides by 2 )

AB = 5