Which expression is equivalent to StartFraction (3 m Superscript negative 2 Baseline n) Superscript negative 3 Baseline Over 6 m n Superscript negative 2 Baseline EndFraction? Assume m not-equals 0, n not-equals 0.
StartFraction m Superscript 5 Baseline Over 162 n EndFraction
StartFraction 1 Over 2 m cubed n EndFraction
StartFraction 8 m Superscript 9 Baseline Over n Superscript 9 Baseline EndFraction
StartFraction 4 m Superscript 8 Baseline Over 3 n cubed EndFraction

Respuesta :

Option a: [tex]\frac{m^{5} }{162n}[/tex] is the equivalent expression.

Explanation:

The expression is [tex]\frac{(3m^{-2} n)^{-3}}{6mn^{-2} }[/tex] where [tex]m\neq 0, n\neq 0[/tex]

Let us simplify the expression, to determine which expression is equivalent from the four options.

Multiplying the powers, we get,

[tex]\frac{3^{-3}m^{6} n^{-3}}{6mn^{-2} }[/tex]

Cancelling the like terms, we have,

[tex]\frac{3^{-3}m^{5} n^{-1}}{6 }[/tex]

This equation can also be written as,

[tex]\frac{m^{5}}{3^{3}6 n^{1} }[/tex]

Multiplying the terms in denominator, we have,

[tex]\frac{m^{5} }{162n}[/tex]

Thus, the expression which is equivalent to [tex]\frac{(3m^{-2} n)^{-3}}{6mn^{-2} }[/tex] is [tex]\frac{m^{5} }{162n}[/tex]

Hence, Option a is the correct answer.

Answer:

A.) m5/162n

Step-by-step explanation: