Which expression is equivalent to the following complex fraction?

StartFraction negative 2 Over x EndFraction + StartFraction 5 Over y EndFraction divided by StartFraction 3 Over y EndFraction minus StartFraction 2 Over x EndFraction
StartFraction negative 2 y + 5 x Over 3 x minus 2 y EndFraction
StartFraction 3 x minus 2 y Over negative 2 y + 5 x EndFraction
StartFraction x squared y squared Over (negative 2 y + 5 x) (3 x minus 2 y) EndFraction
StartFraction (negative 2 y + 5 x) (3 x minus 2 y) Over x squared y squared EndFraction

Respuesta :

Equivalent expressions are expressions that have equal values

The equivalent of the complex fraction is [tex]\frac{5x-2y}{3x - 2y}[/tex]

The complex fraction is given as:

[tex](-\frac{2}{x}+ \frac{5}{y}) \div (\frac{3}{y} - \frac{2}{x})[/tex]

Start by taking the LCMs of the expressions in the brackets

[tex](-\frac{2}{x}+ \frac{5}{y}) \div (\frac{3}{y} - \frac{2}{x}) = \frac{-2y + 5x}{xy} \div \frac{3x - 2y}{xy}[/tex]

Rewrite the fraction as follows:

[tex](-\frac{2}{x}+ \frac{5}{y}) \div (\frac{3}{y} - \frac{2}{x}) = \frac{5x-2y}{xy} \div \frac{3x - 2y}{xy}[/tex]

Express the division as a product

[tex](-\frac{2}{x}+ \frac{5}{y}) \div (\frac{3}{y} - \frac{2}{x}) = \frac{5x-2y}{xy} \times \frac{xy}{3x - 2y}[/tex]

Cancel out common factors

[tex](-\frac{2}{x}+ \frac{5}{y}) \div (\frac{3}{y} - \frac{2}{x}) = \frac{5x-2y}{1} \times \frac{1}{3x - 2y}[/tex]

Rewrite as:

[tex](-\frac{2}{x}+ \frac{5}{y}) \div (\frac{3}{y} - \frac{2}{x}) = \frac{5x-2y}{3x - 2y}[/tex]

Hence, the equivalent of the complex fraction is [tex]\frac{5x-2y}{3x - 2y}[/tex]

Read more about equivalent expressions at:

https://brainly.com/question/15715866

Answer:

c

Step-by-step explanation:

on edge 2021