Respuesta :
Option a: [tex]\frac{x^{10} y^{14}}{729}[/tex] is the correct answer.
Explanation:
The expression is [tex]\left(\frac{\left(3 x y^{-5}\right)^{3}}{\left(x^{-2} y^{2}\right)^{-4}}\right)^{-2}[/tex]
We shall simplify the expression, to determine the expression which is equivalent to [tex]\left(\frac{\left(3 x y^{-5}\right)^{3}}{\left(x^{-2} y^{2}\right)^{-4}}\right)^{-2}[/tex]
Multiplying the powers, we get,
[tex]\left(\frac{\left3^{3} x^{3} y^{-15}\right}{x^{8} y^{-8}}\right)^{-2}[/tex]
Again multiplying the powers, we get,
[tex]\left\frac{\left3^{-6} x^{-6} y^{30}\right}{x^{-16} y^{16}}\right[/tex]
Dividing the fractions, we have,
[tex]\left\frac{\left3^{-6} y^{14}\right}{x^{-10} }\right[/tex]
Applying the exponent rule, [tex]a^{-b}=\frac{1}{a^{b}}[/tex], we have,
[tex]\frac{x^{10} y^{14}}{3^{6} }[/tex]
Hence, the expression can be written as
[tex]\frac{x^{10} y^{14}}{729}[/tex]
Thus, the expression which is equivalent to [tex]\left(\frac{\left(3 x y^{-5}\right)^{3}}{\left(x^{-2} y^{2}\right)^{-4}}\right)^{-2}[/tex] is [tex]\frac{x^{10} y^{14}}{729}[/tex]
Hence, Option a is the correct answer.
The equivalent expression of [tex](\frac{(3xy^{-5})^3}{(x^{-2}y^2)^{-4}})^{-2[/tex] is [tex]\frac{x^{10}y^{14}}{729}[/tex]
What are equivalent expressions?
Equivalent expressions are expressions that have the same value, when evaluated or simplified
The expression is given as;
[tex](\frac{(3xy^{-5})^3}{(x^{-2}y^2)^{-4}})^{-2[/tex]
Start by evaluating the exponents
[tex](\frac{(3xy^{-5})^3}{(x^{-2}y^2)^{-4}})^{-2} = (\frac{3^3x^3y^{-15}}{x^{-8}y^8})^{-2}[/tex]
[tex](\frac{(3xy^{-5})^3}{(x^{-2}y^2)^{-4}})^{-2} = (\frac{27x^3y^{-15}}{x^{8}y^{-8}})^{-2}[/tex]
Evaluate the exponents, again
[tex](\frac{(3xy^{-5})^3}{(x^{-2}y^2)^{-4}})^{-2} = \frac{27^{-2}x^{-6}y^{30}}{x^{-16}y^{16}}[/tex]
Apply the law of indices
[tex](\frac{(3xy^{-5})^3}{(x^{-2}y^2)^{-4}})^{-2} = 27^{-2}x^{16-6}y^{-16+30}[/tex]
Evaluate the exponents
[tex](\frac{(3xy^{-5})^3}{(x^{-2}y^2)^{-4}})^{-2} = 27^{-2}x^{10}y^{14}[/tex]
Evaluate 27^-2
[tex](\frac{(3xy^{-5})^3}{(x^{-2}y^2)^{-4}})^{-2} = \frac{x^{10}y^{14}}{729}[/tex]
Hence, the equivalent expression is [tex]\frac{x^{10}y^{14}}{729}[/tex]
Read more about equivalent expressions at:
https://brainly.com/question/15775046