Answer:
1. Reflection across the x-axis
2. Translation 6 units to the left and 1 unit up
Step-by-step explanation:
The quadrilateral ABCD has its vertices at points A(3,5), B(6,5), C(4,1) and D(1,1).
1. Reflect quadrilateral ABCD across the x-axis. This reflection has the rule:
[tex](x,y)\rightarrow (x,-y),[/tex]
then
[tex]A(3,5)\rightarrow A'(3,-5)\\ \\B(6,5)\rightarrow B'(63,-5)\\ \\C(4,1)\rightarrow C'(4,-1)\\ \\D(1,1)\rightarrow D'(1,-1)[/tex]
2. Translate quadrilateral ABCD 6 units to the left and 1 unit up. This translation has the rule:
[tex](x,y)\rightarrow (x-6,y+1),[/tex]
then
[tex]A'(3,-5)\rightarrow A''(-3,-4)\\ \\B'(6,-5)\rightarrow B''(0,-4)\\ \\C'(4,-1)\rightarrow C''(-2,0)\\ \\D'(1,-1)\rightarrow D''(-5,0)[/tex]