Answer:
(−0.5, −1.75)
Step-by-step explanation:
we have
[tex]y=-\frac{2}{5}x-2[/tex] -----> equation A
[tex]y=5x+1[/tex] ----> equation B
equate equation A and equation B
[tex]-\frac{2}{5}x-2=5x+1[/tex]
solve for x
Multiply by 5 both sides
[tex]-2x-10=25x+5\\25x+2x=-10-5\\27x=-15\\x=-\frac{5}{9}[/tex]
Find the value of y
substitute the value ox in equation A or equation B
[tex]y=5(-\frac{5}{9})+1[/tex]
[tex]y=-\frac{25}{9}+1[/tex]
[tex]y=-\frac{16}{9}[/tex]
The exact solution is [tex](-\frac{5}{9},-\frac{16}{9})[/tex]
The approximate solution is[tex](-0.556,-1.778)[/tex]
therefore
The best estimate for the solution of the system of equations is the point (−0.5, −1.75)