Respuesta :
Answer:
Angle of incidence that entered material b= 63.1°
Angle of incidence between a and b = 55.9°
Explanation: Using the formular:
n1sintheta1= n2sintheta2
The light ray which enters material B will be
1.4Sin72.8° = 1.5Sin theta
1.3373= 1.5Sintheta
sintheta = 1.3373/1.5
Sin^-1 0.8916 = Theta
63.1 = theta
When the ray hits interface with material a
1.5Sin63.1 = 1.3 Sin theta
1.3374 = 1.3Sin theta
Sintheta= 1.3374/1.3
Sin theta = 1.0877
There will be total reflection off the boundary b c because sin theta exceeded 1 in value.
The equation should be
1.4sin63.1 = 1.4 sin theta
Sin theta=72.8°
When the ray hits air-c boundary:
1.4sin72.8=1.00sin theta
Sin theta=1.3374/1 =1.3374
There is total reflection.
In material a,the ray will:
1.3sin72.8° = 1.00sin theta
There will be total reflection when the ray hits a-b boundary.
1.3sin72.8= 1.5sintheta
Sin theta= 1.2419/ 1.5
Sin theta =0.8279
Theta= Sin^-10.8279= 55.88°
When ray hits c-air boundary
1.4sin63.1= 1.00sintheta
1.2485= sin theta = Toal reflection.
Therefore when the ray of light pass through the layers of material a, b and c the boundary with air on top and bottom will be total reflection.
The angle of incidence of the ray when it enters material B is 63.06°.The angle of incidence of the ray between A and B = 55.08°
Total Internal Reflection
According to Snell's law; at the interface of two media
[tex]n_1\,sin\,\theta_1= n_2\,sin\,\theta_2\\\\sin\,\theta_2=\frac{1.4\times \,sin\,72.8 ^\circ}{1.5} =0.8915\\\\\implies \theta _2 = sin^{-1}(0.8915)=63.06^\circ[/tex]
When the ray hits interface with material A;
[tex]1.5\, sin\,63.1^\circ = 1.3 \times sin \,\theta_3\\sin\,\theta_3= \frac{1.5\, sin\,63.06^\circ}{1.3}=1.028[/tex]
Here, the sine of the angle has a value of more than 1.
So, there is total internal reflection here.
When the ray hits the Air-C boundary;
[tex]1.4\times \,sin\,72.8 ^\circ = 1\, \times sin \,\theta\\\implies sin \,\theta= 1.4\times \,sin\,72.8 ^\circ =1.33[/tex]
Here also, the sine of the angle has a value of more than 1. So, there is total internal reflection here.
In case of material A, applying Snell's law;
[tex]1.3\times sin\,72.8^\circ = 1\times sin \,\theta\\\implies sin \,\theta=1.3\times sin\,72.8^\circ=1.24[/tex]
Here also, there will be total internal reflection.
When the ray hits the A-B interface.
[tex]1.3\times sin\,72.8^\circ = 1.5\,sin\,\theta\\sin\,\theta=\frac{1.3\times sin\,72.8^\circ}{1.5} =0.82\\\theta = sin^{-1}(0.82)=55.084[/tex]
Now, when the ray hits the C-Air boundary;
[tex]1.4\times sin\,63.06^\circ = 1 \times sin\,\theta\\sin\,\theta =1.4\times sin\,63.06^\circ =1.24[/tex]
So, as the ray of light passes through the layers of materials A, B and C the boundary with air on top and bottom will go through total internal reflection.
Learn more about total internal reflection here:
https://brainly.com/question/12995100