Answer:
the rate of change of [tex][N_2][/tex] = 10.0 M/s
the rate of change of [tex][H_2O][/tex] = 20.0 M/s
Explanation:
Given that [tex]\frac{d[NO]}{dt}[/tex] = 20.0 M/s
The equation for the reaction can be written as:
[tex]2 NO_{(g)} + 2H_2--->2H_2}O{(g)}+N_2_{(g)}[/tex]
The rate of change of [tex][N_2][/tex] can be calculated as:
[tex]\frac{-1}{2} \frac{d[NO]}{dt} = \frac{d[N_2]}{dt}[/tex]
[tex]\frac{-1}{2} (-20.0M/s)= \frac{d[N_2]}{dt}[/tex]
[tex]-1 *-10.0M/s= \frac{d[N_2]}{dt}[/tex]
[tex]10.0M/s= \frac{d[N_2]}{dt}[/tex]
[tex]\frac{d[N_2]}{dt}= 10.0M/s[/tex]
∴ the rate of change of [tex][N_2][/tex] = 10.0 M/s
The rate of change of [tex][H_2O][/tex] can be calculated as:
[tex]\frac{-1}{2} \frac{d[NO]}{dt} = \frac{+1}{2} \frac{d[H_2O]}{dt}[/tex]
[tex]\frac{-1}{2} (-20.0M/s)= \frac{+1}{2} \frac{d[H_2O]}{dt}[/tex]
[tex]10.0 M/s= \frac{+1}{2} \frac{d[H_2O]}{dt}[/tex]
[tex]10.0 M/s*2= \frac{d[H_2O]}{dt}[/tex]
[tex]\frac{d[H_2O]}{dt} = 20.0 M/s[/tex]
∴ the rate of change of [tex][H_2O][/tex] = 20.0 M/s