Answer:
The intensity of light be maximum is for angles 23.3° and 52.3°.
Explanation:
Given that,
Wave length = 632.8 nm
Distance = 1.60 μm
We need to calculate the intensity of light be maximum
Using Bragg's law
[tex]d\sin\theta=n\lambda[/tex]
[tex]\theta=\sin^{-1}(\dfrac{n\lambda}{d})[/tex]
We need to calculate the angle for different value of n
Using Bragg's law
[tex]\theta=\sin^{-1}(\dfrac{n\lambda}{d})[/tex]
For n₁,
Put the value into the formula
[tex]\theta=\sin^{-1}(\dfrac{632.8\times10^{-9}}{1.60\times10^{-6}})[/tex]
[tex]\theta=23.3^{\circ}[/tex]
For n₂,
[tex]\theta=\sin^{-1}(\dfrac{2\times632.8\times10^{-9}}{1.60\times10^{-6}})[/tex]
[tex]\theta=52.3^{\circ}[/tex]
Hence, The intensity of light be maximum is for angles 23.3° and 52.3°.